Bill of Health Blog Symposium: How Patients Are Creating the Future of Medicine

We are pleased to host this symposium featuring commentary from participants in the University of Minnesota’s Consortium on Law and Values in Health, Environment & the Life Sciences event, “How Patients Are Creating Medicine’s Future: From Citizen Science to Precision Medicine.”  Below, Susan M. Wolf tees up the issues.  All posts in the series will be available here.

How Patients Are Creating the Future of Medicine: Roundtable at the University of Minnesota

By Susan M. Wolf, JD (Chair, Consortium on Law and Values in Health, Environment & the Life Sciences; McKnight Presidential Professor of Law, Medicine & Public Policy; Faegre Baker Daniels Professor of Law; Professor of Medicine, University of Minnesota)

Citizen science, the use of mobile phones and other wearables in research, patient-created medical inventions, and the major role of participant-patients in the “All of Us” Precision Medicine Initiative are just a few of the indicators that a major shift in biomedical research and innovation is under way. Increasingly, patients, families, and the public are in the driver’s seat, setting research priorities and the terms on which their data and biospecimens can be used. Pioneers such as Sharon Terry at Genetic Alliance and Matthew Might at NGLY1.org have been forging a pathway to genuine partnership linking patients and researchers. But the legal and ethical questions remain daunting. How should this research be overseen? Should the same rules apply as in more conventional, academically driven research? What limits should apply to parental use of unvalidated treatments on children affected by severe, rare disease? And should online patient communities be able to set their own rules for research?

In December 2016, the University of Minnesota’s Consortium on Law and Values in Health, Environment & the Life Sciences convened four thinkers with diverse academic and professional backgrounds to analyze these trends. This event, “How Patients Are Creating Medicine’s Future: From Citizen Science to Precision Medicine” was part of the Consortium’s Deinard Memorial Lecture Series on Law & Medicine, co-sponsored by the University’s Center for Bioethics and Joint Degree Program in Law, Science & Technology, with support from the Deinard family and law firm of Stinson Leonard Street. To see a video of the event, visit https://z.umn.edu/patientledvideo.

The four speakers offered diverse and provocative perspectives, each of which is highlighted in this series.

Citizen-Led Bioethics for the Age of Citizen Science: CRexit, BioEXIT, and Popular Bioethics Uprisings

By Barbara J. Evans, MS, PhD, JD, LLM (Alumnae College Professor of Law; Director, Center on Biotechnology & Law, University of Houston)

This post is part of a series on how patients are creating the future of medicine.  The introduction to the series is available here, and all posts in the series are available here.

The citizen science movement goes beyond merely letting people dabble in science projects. It involves giving regular people a voice in how science should be done. And citizen science calls for a new, citizen-led bioethics.

Twentieth-century bioethics was a top-down affair. Ethics experts and regulators set privacy and ethical standards to protect research subjects, who were portrayed as autonomous but too vulnerable and disorganized to protect themselves. The Common Rule’s informed consent right is basically an exit right: people can walk away from research if they dislike the study objectives or are uncomfortable with the privacy protections experts think are good for them. An exit right is not the same thing as having a voice with which to negotiate the purposes, terms, and conditions of research.

Read More

Participant Power

By Jason Bobe, MSc (Associate Professor, Icahn School of Medicine at Mount Sinai; Executive Director, Open Humans Foundation; Co-founder, DIYbio.org)

This post is part of a series on how patients are creating the future of medicine.  The introduction to the series is available here, and all posts in the series are available here. Jason Bobe will be participating in an NIH videocast on return of genetic results in the All of Us research program starting at 8AM on Monday, March 6, 2017.  You can tune in here

People across the world regularly rank health and health care near the top of what they value. Yet most people don’t volunteer to participate in organized health research. This is the “participation paradox.” We appear to be neglecting the very inquiry that feeds our ability to understand our bodies and to evaluate approaches to preserve, improve, or recover health from disease.

Better advertising and more effective recruitment strategies for research studies may help drive numbers up. But catchy slogans won’t drive a cultural shift toward a new future, where research participation becomes a regular part of life and organized health research is seen as a first step toward solving our health challenges, not merely the last hope for people with devastating illnesses.

Given how long it took patient-centered medicine to catch on, participant-centered research may face a long road ahead. Warner Slack was publishing about “patient power” at least as far back as 1972 (in his chapter on “Patient Power: A Patient-Oriented Value System,” in Computer Diagnosis and Diagnostic Methods, edited by John A. Jacquez, 1978). More than forty years later, great strides have been made, yet “patient power” is still a work in progress.

Read More

The Wearables Revolution: Personal Health Information as the Key to Precision Medicine

By Ernesto Ramirez, PhD (Director of Research & Development, Fitabase)

This post is part of a series on how patients are creating the future of medicine.  The introduction to the series is available here, and all posts in the series are available here.

Personal health data has historically been controlled by the healthcare industry. However, much has changed in the last decade. From wearable devices for tracking physical activity, to services that decode the personal microbiome, there has been an explosion of methods to collect and understand our personal health and health behavior. This explosion has created a new type of data that has the potential to transform our understanding of the deep interactions of health behaviors, exposure, and outcomes — data that is large-scale, longitudinal, real-time, and portable.

New devices, applications, and services are creating large amounts of data by providing methods for collecting information repeatedly over long periods of time. For example, I have tracked over 20 million steps since 2011 using a Fitbit activity tracker. Many of the new tools of personal health data are also connected to the Internet through Bluetooth communication with smartphones and tablets. This connectivity, while commonly used to update databases as devices sync, also provides an opportunity to view data about ourselves in real-time. Lastly, there is an increasing interest in making this data accessible through the use of application programming interfaces (APIs) that allow third parties to access and analyze data as is becomes available. Already we are seeing unique and useful tools being developed to bring consumer personal health data to bear in clinical settings, health research studies, and health improvement tools and services.

The availability of this type of personal health data is having a big impact. The examples provided by the #WeAreNotWaiting and #OpenAPS communities showcase the groundbreaking potential of portable, usable, personal data. It is transforming the quality of life for individuals living with type 1 diabetes. Through access to data from continuous glucose monitors and wireless control of insulin pumps, over 100 individuals have implemented their own version of an artificial pancreas. These pioneering individuals are at the forefront of a revolution using personal health data to take charge of care and customize treatment decisions.

Personal health data will play a major role in the future of precision medicine, healthcare, and health research. Sensors will continue to improve. New data streams will become available. More analytical tools will surface. There will be more support for portable and sharable data. The availability of large-scale, longitudinal, and real-time personal health data will improve not only the ability of individuals to understand their own health, but when pooled, may produce new insights about what works, for what people, under what conditions.

Patient-Driven Medical Innovations: Building a Precision Medicine Supply Chain for All

Kingshuk K. Sinha, PhD (Department Chair and Mosaic Company-Jim Prokopanko Professor of Corporate Responsibility Supply Chain and Operations Department, Carlson School of Management, University of Minnesota)

This post is part of a series on how patients are creating the future of medicine.  The introduction to the series is available here, and all posts in the series are available here.

While the promise and potential of precision medicine are clear, delivering on that promise and making precision medicine accessible to all patients will require clinical adoption and a reliable and responsible supply chain. We already know this is a big problem in pharmacogenomics technology; the science is advancing rapidly, but clinical adoption is lagging. While Big Data can be a powerful tool for health care – whether it be an individual’s whole genome or an online aggregation of information from many patients with a particular disease – building implementation pathways to analyze and use the data to support clinical decision making is crucial. All of the data in the world doesn’t mean much if we can’t ensure that the development of precision medicine is linked with the efficient, safe, and equitable delivery of precision medicine.

Effective implementation means addressing the stark realities of health disparities. Leveraging citizen science to develop and deliver precision medicine has the potential to reduce those disparities. Citizen science complements more traditional investigator-driven scientific research and engages amateur and non-professional scientists, including patients, patients’ families, and communities across socio-economic strata as well as country boundaries.

Read More